Consumer preferences towards on-line and off-line grocery shopping channels in Norway

MARCUCLIE *, GATTA V*, SHENGAN L*,TING C ${ }^{*}$

* rama tre university and malde university callege *ROMA TRE UNIVERSITY
今 MDLDE UNIVERSITY CDLLEGE

Società Italiana degli Economisti dei Trasporti e della Logistica (SIET)
Italian Society of Transport and Logistics Economists
XX Scientific Meeting, "Mobility and the city: policies for sustainability"
DAStU, Politecnica di Milano Milan, June 2Dth-22nd, 2018

Toㄷ

1. Intraduction, background and mativation
2. Literature review
3. Methodalogy
4. Questionnaire and data description
5. Econometric results
6. Market simulations, policy and managerial implications
7. Summary and conclusions

I. Intraduction, backgraund and mativation

-E-commerce in 2017 reached US\$2.3 trillion (1.6G billion e-shoppers) with wide regional differences - Norway ranks second among Nardic countries - 65% of Norwegian aged $18 \% 19$ buy goods anline -E-grocery in 2016 was 5\% of total e-commerce -E-grocery is expected to grow in the future in Norway and inquiring future market share is relevant

I.
 Introduction, background and motivation

Research problem: Investigating Norwegian consumers' patential demand for Egracery shapping, and subsequently the implications an transpartation

Research question I: What are the factors affecting consumer preferences towards online and affline gracery shopping channe/s and how they influence consumers choices?

Research question 2: How the E-gracery market share might change in Norway?
Research question 3: What are the implícations for the patential demand of E-
gггсегу?

2. Literature review

3. Methodology

- E-gracery is still an emerging industry in Norway and observations are few \rightarrow This paper uses stated preference methods
- Data are acquired via: literature review, in-depth interview, focus graups, questionnaire definition, development, pilating an administration
- Agents' channel choice probabilities aге estimated using discrete choice madels (202 respandents/ IZOB choice tasks)

4. Duestionnaire and data description

Choice tasks - Atributes identification

4. Duestionnaire and data description

Atributes
 level
 identification

Alternatives	Attributes	Levels
In-store	Product price (PP)	Stated
	Travel time (TT)	Stated
	Product range (PR)	100\%
Home delivery	Product price (PP)	Pivoted: 90\%, stated (100\%), 110\%
	Service cost (SC_HD)	0,60,100 Nok
	Time window (TW)	$30 \mathrm{~min}, 60 \mathrm{~min}, 120 \mathrm{~min}$
	Product range (PR)	50\%, 150\%, 100\%
	Lead time (LT)	1 hour, 6 hours, 12 hours
Click and pick	Product price (PR)	Pivoted: 90%, stated (100\%), 110\%
	Travel time (TT)	Pivoted: 50\%, 75\%, stated (100\%)
	Service cost (SC_CP)	0,50
	Product range (PR)	50\%, 150\%, 100\%
	Lead time (LT)	1 hour, 6 hours, 12 hours

5. Econometric results

Utility specification
$\mathrm{V}_{\text {store }}=\beta_{0 \text { store }}+\beta_{1 \text { store }} \mathrm{PP}_{\text {store }}+\beta_{2 \text { store }} \mathrm{TT}_{\text {store }}+\beta_{3 \text { store }} \mathrm{PR}_{\text {store }}$
$\mathrm{V}_{\text {home delivery }}=\beta_{0 \text { hd }}+\beta_{1 \text { hd }} \mathrm{PP}_{\text {hd }}+\beta_{2 h d} \mathrm{SC}$ _HD $+\beta_{3 h d} \mathrm{TW}_{\text {hd }}+\beta_{4 h d} \mathrm{PR}_{\text {hd }}+\beta_{5 h d} \mathrm{LT}_{\text {hd }}$
$\mathrm{V}_{\text {click\&pick }}=\beta_{0 c p}+\beta_{1 \mathrm{cp}} \mathrm{PP}_{\mathrm{cp}}+\beta_{2 \mathrm{cp}} \mathrm{TT}_{\mathrm{cp}}+\beta_{3 \mathrm{cp}} \mathrm{SC}_{-} \mathrm{CP}+\beta_{4 \mathrm{cp}} \mathrm{PR}_{\mathrm{cp}}+\beta_{5 h d} \mathrm{LT}_{\mathrm{cp}}$

5. Economemetric results

MNL results - overall	Coefficient		Strn Err	I	Prob. 2	95\% conf int.	
	Purchase Price	-00920***	. 01414	-6.54	. 1000	-.01196	-.0064
Sign: Loefficients	Service Charge_Home Delivery	-.01809***	. 00224	-8.09	. 0000	-. 02248	-. 01371
are in line with	Time Window	-.00437*	. 02250	-. 1.75	. 8800	-.00926	. 00052
expectation	Product Range	.05670***	. 010163	4.11	. 1000	. 00351	. 08980
Significace: Only the	Lead Time	-.7726***	. 14881	-4.91	. 1000	-. 11168	-. 04364
ASC_SM coefficient	ASC_LickPPick	- $77723 * * *$. 20751	-3.72	. 002	-1.17905	-.36563
is not significant	Travel T ime	-.02967**	. 00487	-6.09	. 1000	-.03921	-. 02012
	Service Charge Clikepick	-01738***	. 03342	-5.08	. 0 [0]	-. 02408	-. 11068
	ASC_SuperMarket	-15848	. 20125	-.79	. 4310	-.55291	. 23596
		${ }^{* * * * * * *}$,	signiicance	\%.5\%,		Pseudo R2	

5. Economemtric results

- Consumers' WTP is positive for: widerproduct range, shorter travel time, time window or lead time
- I minute TT equals 3.225 NOK product price, and 1.707 NDK service cost for CP choice. Agents prefer to pay higher product price than service cost to save travel time
- ILT hour = 4 NDK (with respect to SC_HD)

Wheasurs	
WTP [LT(Min)/PP(NGK)]	-0.132NDK/Min
WTP [PR(\%)/PP(NOK)]	0.728N0K/+1\%
WTP [TT(Min)/PP(NGK)]	-3.225NDK/Min
WTP [TW(Min)/PP(NDK)]	-0.475NDK/Min
WTP [LT(Min)/SL_HD(NDK)]	-0.067NDK/Min
WTP [PR(\%)/SE_HD(NGK)]	-0.370NOK/+\|\%
WTP [TW(Min)/SE_HD(NDK)]	-0.242NDK/Min
WTP [LT(Min)/SE_[P(NGK)]	-0.770NDK/Min
WTP [PR(\%)/SC_LP(NOK)]	0.386NGK/+1\%
WTP [TT(Min)/S[_LP(NGK)]	- $1.707 \mathrm{NDK} / \mathrm{Min}$

5. Economemetric results

Subgroups comparisons (naive heterogeneity)

- Agents with previous E -gracery experiences prefer HD while PR is less important
- Those without E-grocery experiences have na clear preferences between HD and SM
- Agents that have already purchased grocery online prefer to pay higher product price for saving travel time than those who have not such experience
- Agents who usually perform dedicated trip prefer HD
- Older people are willing to pay more service cost to save travel time than younger ones
- Males prefer HD, whereas females prefer SM
- Agents with usually more than 3 shopping bags prefer HD

G. Market simulations, policy and managerial implications

Current market share

	IN STORE				HOME DELIVERY					CLICK AND PICK				$\mathbf{P}(\mathbf{i})$		
	$\begin{gathered} \text { PP } \\ \text { (NOK) } \end{gathered}$	$\begin{gathered} \text { TT } \\ \text { (MIN) } \end{gathered}$	$\begin{gathered} \text { PR } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { PP } \\ \text { (NOK) } \end{gathered}$	$\begin{gathered} \text { SC_HD } \\ \text { (NOK) } \end{gathered}$	$\begin{gathered} \text { TW } \\ \text { (MIN) } \end{gathered}$	$\begin{gathered} \text { PR } \\ (\%) \end{gathered}$	$\begin{gathered} \text { LT } \\ \text { (HOUR) } \end{gathered}$	$\begin{gathered} \text { PP } \\ \text { (NOK) } \end{gathered}$	$\begin{aligned} & \text { SC_CP } \\ & \text { (NOK) } \end{aligned}$	$\begin{gathered} \text { TT } \\ \text { (MIN) } \end{gathered}$	$\begin{gathered} \text { PR } \\ (\%) \end{gathered}$	$\begin{gathered} \text { LT } \\ \text { (HOUR) } \end{gathered}$	STORE	HD	CP
Large basket	1000	20	100	1000	59	120	100	12	1000	0	20	100	12	71,1\%	12,8\%	16,1\%
Small basket	500	20	100	500	89	120	100	12	500	49	20	100	12	83,2\%	8,7\%	8,0\%
Scheduled delivery	1000	20	100	1000	39	120	90	12	970	0	10	90	12	61,8\%	15,0 \%	23,2\%
Express delivery	1000	20	100	1000	299	30	90	1	970	0	10	90	12	72,3\%	0,5\%	27,1\%

Scenaria l: From separated prices to free service cost
Scenario Z: Lead time is reduced from 12 hours to 6 hours.
Scenario 3: Reducing the time window from 2 hours to I hour.
Scenario 4: Increasing product range by 20\%
Scenario 5: Reducing travel time by 50\%

B. Market simulations, policy and managerial implications

Scenario Simulations

	IN STORE			HOME DELIVERY					CLICK AND PICK					$\mathbf{P (i)}$		
	$\begin{gathered} \text { PP } \\ (\mathrm{NOK}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{TT} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{aligned} & \text { PR } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \text { PP } \\ (\mathrm{NOK}) \end{gathered}$	$\begin{gathered} \text { SC_HD } \\ (\mathrm{NOK}) \end{gathered}$	$\begin{gathered} \text { TW } \\ (\mathrm{MIN}) \end{gathered}$	$\begin{aligned} & \text { PR } \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{LT} \\ \text { (HOUR) } \end{gathered}$	$\begin{gathered} \text { PP } \\ (\mathrm{NOK}) \end{gathered}$	$\begin{aligned} & \mathrm{SC}+\mathrm{CP} \\ & (\mathrm{NOK}) \end{aligned}$	$\begin{gathered} \mathrm{TT} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{aligned} & \text { PR } \\ & (\%) \end{aligned}$	$\begin{gathered} \mathrm{LT} \\ (\mathrm{HOUR}) \end{gathered}$	STORE	HD	CP
Base	500	20	100	500	89	120	100	12	500	49	20	100	12	83,2 \%	8,7\%	8,0 \%
Scenario 1	500	20	100	589	0	120	100	12	549	0	20	100	12	72,7 \%	16,8 \%	10,5\%
Scenario 2	500	20	100	500	89	120	100	6	500	49	20	100	6	76,2 \%	12,4 \%	11,4 \%
Scenario 3	500	20	100	500	89	60	100	12	500	49	20	100	12	81,1 \%	11,1 \%	7,8\%
Scenario 4	500	20	100	500	89	120	120	12	500	49	20	120	12	81,3 \%	9,8\%	9,0\%
Scenario 5	500	20	100	500	89	120	100	12	500	49	10	100	12	81.0 \%	8,5\%	10.5\%

Scenarial: From separated prices to free service cast
Scenario 2: Lead time is reduced from I 2 haurs to G hours
Scenaria 3: Reducing the time window from 2 hours to 1 hour
S'cenaria 4: Increasing product range by 2UW
Scemaria 5: Reducing travel time by 50\%

G. Market simulations, policy and managerial implications

Managerial implications

- Since respondents are more sensitive towards Service Cost than Purchase Cost \rightarrow «Free service cast» will increase Egrocery market share
- Differentiated fee can stimulate customers choice for larger baskets and non-peak transportation hours \rightarrow A dynamic pricing strategy can probably be introduced with financial surcess
- Marketing strategy towards different socio demographic groups seems plausible \rightarrow females' WTP to save travel times is greater than men's

Policy implications

- Information technologies and innovative transport vehicles (e.g. autonomous vehicles) will play an important role
- A well developed network of praximity stations and pickup points are relevant for E-graceries
- Coaperation on last mile delivery among aperators should be explored further

7. Canclusions

Contributians

- The study provides a detailed database of 202 households' gracery shopping choices
- ...Estimates utility functions for three gracery shopping alternatives: in store, home delivery, and click and pick
- ...Draws managerial/policy implications on the base of given experiment results

Limitations

- Consumers' channel choice could be influenced by other factors this study did not consider
- This study hypothesizes consumers decision making process is stable over time while one should test this

Future research

- Further research could focus on developing a framework far detecting interactions in last-mile E-groceries delivery (e.g. ABM)
- Develop comparable studies in different countries (Italy and China under way!).
- Estimate more sophisticated models (e.g. heterogeneity, non -linearity) and investigate dynamic consumer channel choice
- Estimate environmental impact of E-grocery channel choice

Thanks for listening!

edaardo.marcucciantlc.uniroma3.it

Transport
Research
LAB

